Susceptibility to substitution

1 Setup

Flags and settings.


In [1]:
SAVE_FIGURES = False
PAPER_FEATURES = ['frequency', 'aoa', 'clustering', 'letters_count',
                  'synonyms_count', 'orthographic_density']
BIN_COUNT = 4

Imports and database setup.


In [2]:
import pandas as pd
import seaborn as sb
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from progressbar import ProgressBar
from statsmodels.stats.proportion import multinomial_proportions_confint

%cd -q ..
from brainscopypaste.conf import settings
%cd -q notebooks
from brainscopypaste.mine import Model, Time, Source, Past, Durl
from brainscopypaste.db import Substitution
from brainscopypaste.utils import init_db, session_scope, stopwords
engine = init_db()

Build our data.


In [3]:
def qposition(values, position):
    value = values[position]
    if np.isnan(value):
        return np.nan, np.nan
    finite_values = values[np.isfinite(values)]
    svalues = np.array(sorted(finite_values))
    length = len(svalues)
    ours = np.where(svalues == value)[0]
    return ours[0] / length, (ours[-1] + 1) / length

In [4]:
model = Model(time=Time.continuous, source=Source.all, past=Past.all, durl=Durl.all, max_distance=1)
stop_poses = ['C', 'F', 'I', 'M', 'P', 'S', 'U']

data = []

# First get the exact substitution ids so we can get a working progress bar
# in the next step.
with session_scope() as session:
    substitutions = session.query(Substitution.id)\
        .filter(Substitution.model == model)
    print("Got {} substitutions for model {}"
          .format(substitutions.count(), model))
    substitution_ids = [id for (id,) in substitutions]

for substitution_id in ProgressBar(term_width=80)(substitution_ids):
    with session_scope() as session:
        substitution = session.query(Substitution).get(substitution_id)
        
        # Prepare these arrays for use in stopword-checking.
        dslice = slice(substitution.start,
                       substitution.start
                       + len(substitution.destination.tokens))
        lemmas = substitution.source.lemmas[dslice]
        tokens = substitution.source.tokens[dslice]
        tags = substitution.source.tags[dslice]
        is_stopword = np.array([(lemma in stopwords)
                                or (token in stopwords)
                                for (lemma, token) in zip(lemmas, tokens)])
        
        for feature in Substitution.__features__:
            
            # Get feature values for the sentence and its words.
            sentence_values, _ = substitution.\
                source_destination_features(feature)
            sentence_values_rel, _ = substitution.\
                source_destination_features(feature,
                                            sentence_relative='median')
            source_type, _ = Substitution.__features__[feature]
            words = getattr(substitution.source, source_type)[dslice]
            
            # Find the bins we'll use.
            # If there are only NaNs or only one feature value
            # we can't get bins on this sentence, so we want at least
            # 2 different feature values.
            # We also skip feature values if the source word is not coded
            # for the feature, as it would skew the 'appeared' 
            # distributions compared to the distribution of substituted
            # words. (For instance, the sum of categories would not be 
            # equal to the sum of H0s in the very last graphs, 
            # on sentencequantile. It also lets us make meaningful H0
            # comparison in all the other feature-based graphs.)
            non_sw_values = sentence_values.copy()
            non_sw_values[is_stopword] = np.nan
            non_sw_value_set = \
                set(non_sw_values[np.isfinite(non_sw_values)])
            if (len(non_sw_value_set) <= 1 or
                    np.isnan(sentence_values[substitution.position])):
                allnans = [np.nan] * len(non_sw_values)
                bins = allnans
                non_sw_values = allnans
                sentence_values = allnans
                sentence_values_rel = allnans
            else:
                bins = pd.cut(non_sw_values, BIN_COUNT, labels=False)
            
            # For each non-stopword, store its various properties.
            for i, (word, tag, skip) in enumerate(zip(words, tags,
                                                      is_stopword)):
                if skip:
                    # Drop any stopwords.
                    continue

                # Get a readable POS tag
                rtag = tag[0]
                rtag = 'Stopword-like' if rtag in stop_poses else rtag
                
                # Get the word's quantile position.
                start_quantile, stop_quantile = qposition(non_sw_values, i)

                # Store the word's properties.
                data.append({
                    'cluster_id': substitution.source.cluster.sid,
                    'destination_id': substitution.destination.sid,
                    'occurrence': substitution.occurrence,
                    'source_id': substitution.source.sid,
                    'position': substitution.position,
                    'feature': feature,
                    'word': word,
                    'POS': tag,
                    'rPOS': rtag,
                    'target': i == substitution.position,
                    'value': sentence_values[i],
                    'value_rel': sentence_values_rel[i],
                    'bin': bins[i],
                    'start_quantile': start_quantile,
                    'stop_quantile': stop_quantile,
                    'word_position': i
                })

words = pd.DataFrame(data)
del data


Got 72339 substitutions for model Model(time=Time.continuous, source=Source.all, past=Past.all, durl=Durl.all, max_distance=1)
100% (72339 of 72339) |####################| Elapsed Time: 0:15:07 Time: 0:15:07

Assign proper weight to each substitution.


In [5]:
divide_target_all_sum = \
    lambda x: x / (words.loc[x.index].target 
                   * words.loc[x.index].weight_all).sum()
divide_target_feature_sum = \
    lambda x: x / (words.loc[x.index].target 
                   * words.loc[x.index].weight_feature).sum()

# Weight is 1, at first (or 1 for feature-coded substitutions).
words['weight_all'] = 1
words['weight_feature'] = 1 * np.isfinite(words.value)

# Divided by the number of substitutions that share a durl.
print('Computing shared durl (all) weights')
words['weight_all'] = words\
    .groupby(['destination_id', 'occurrence', 'position',
              'feature'])['weight_all']\
    .transform(divide_target_all_sum)
print('Computing shared durl (per-feature) weights')
words['weight_feature'] = words\
    .groupby(['destination_id', 'occurrence', 'position',
              'feature'])['weight_feature']\
    .transform(divide_target_feature_sum)

# Divided by the number of substitutions that share a cluster.
# (Using divide_target_sum, where we divide by the sum of weights,
# ensures we count only one for each group of substitutions sharing
# a same durl.)
print('Computing shared cluster (all) weights')
words['weight_all'] = words\
    .groupby(['cluster_id', 'feature'])['weight_all']\
    .transform(divide_target_all_sum)
print('Computing shared cluster (per-feature) weights')
words['weight_feature'] = words\
    .groupby(['cluster_id', 'feature'])['weight_feature']\
    .transform(divide_target_feature_sum)

# Add a weight measure for word appearances, weighing a word
# by the number of words that appear with it in its sentence.
# And the same for substitutions *whose source is coded by the feature*.
# (This lets us have the sum of categories equal the sum of H0s
# in the very last graphs [on sentencequantile], and make meaningful H0
# comparison values for all the other feature-based graphs.)
print('Computing appeared (all) weights')
words['weight_all_appeared'] = words\
    .groupby(['source_id', 'destination_id', 'occurrence',
              'position', 'feature'])['weight_all']\
    .transform(lambda x: x / len(x))
print('Computing appeared (per-feature) weights')
words['weight_feature_appeared'] = words\
    .groupby(['source_id', 'destination_id', 'occurrence',
              'position', 'feature'])['weight_feature']\
    .transform(lambda x: x / np.isfinite(words.loc[x.index].value).sum())

# In the above, note that when using a model that allows for multiple
# substitutions, those are stored as two separate substitutions in the
# database. This is ok, since we count the number of times a word is
# substituted compared to what it would have been substituted at
# random (i.e. we measure a bias, not a probability). Which leads us to
# count multiple substitutions in a same sentence as *different*
# substitutions, and to reflect this in the weights we must group
# substitutions by the position of the substituted word also (which is
# what we do here).


Computing shared durl (all) weights
Computing shared durl (per-feature) weights
Computing shared cluster (all) weights
Computing shared cluster (per-feature) weights
Computing appeared (all) weights
Computing appeared (per-feature) weights

Prepare feature ordering.


In [6]:
ordered_features = sorted(
    Substitution.__features__,
    key=lambda f: Substitution._transformed_feature(f).__doc__
)

Prepare counting functions.


In [7]:
target_all_counts = \
    lambda x: (x * words.loc[x.index, 'weight_all']).sum()
target_feature_counts = \
    lambda x: (x * words.loc[x.index, 'weight_feature']).sum()
appeared_all_counts = \
    lambda x: words.loc[x.index, 'weight_all_appeared'].sum()
appeared_feature_counts = \
    lambda x: words.loc[x.index, 'weight_feature_appeared'].sum()
susty_all = \
    lambda x: target_all_counts(x) / appeared_all_counts(x)
susty_feature = \
    lambda x: target_feature_counts(x) / appeared_feature_counts(x)

2 On POS


In [8]:
# Compute POS counts.
susties_pos = words[words.feature == 'aoa']\
    .groupby('rPOS')['target']\
    .aggregate({'susceptibility': susty_all,
                'n_substituted': target_all_counts,
                'n_appeared': appeared_all_counts})\
    .rename_axis('POS group')

# Plot.

fig, axes = plt.subplots(2, 1, figsize=(8, 8))
# Raw substituted and appeared values.
susties_pos[['n_substituted', 'n_appeared']]\
    .plot(ax=axes[0], kind='bar', rot=0)
# With their CIs.
total_substituted = susties_pos.n_substituted.sum()
cis = multinomial_proportions_confint(susties_pos.n_substituted.round(),
                                      method='goodman')
for i in range(len(susties_pos)):
    axes[0].plot([i-.125, i-.125], cis[i] * total_substituted,
                 lw=4, color='grey',
                 label='95% CI' if i == 0 else None)
axes[0].legend()
# Substitutability values.
susties_pos['susceptibility']\
    .plot(ax=axes[1], kind='bar', legend=True, ylim=(0, 2), rot=0)
axes[1].set_ylabel(r'$susceptibility = \frac{substituted}{appeared}$')
# With their CIs.
for i in range(len(susties_pos)):
    axes[1].plot([i, i], (cis[i] * total_substituted 
                          / susties_pos.n_appeared.iloc[i]),
                 lw=4, color='grey',
                 label='95% CI' if i == 0 else None)
axes[1].legend(loc='best')
# Save if necessary.
if SAVE_FIGURES:
    fig.savefig(settings.FIGURE.format('all-susceptibilities-pos'),
                bbox_inches='tight', dpi=300)


Note on confidence intervals

Here we're in case (3) of the explanation below on confidence intervals (in section 3): it's really like a multinomial sampling, but not quite since not all POS tags are available to sample from in all the sentences. There's no way out of this, so we're going to use multinomial CIs. We can safely scale all the bars and CIs to their respective n_appeared values, since that is an independent given before the sampling.

Are the appeared and substituted proportions statistically different?

The only test we can easily do is a multinomial goodness-of-fit. This tells us if the n_substituted counts are significantly different from the reference n_appeared counts.

From there on we know a few things:

  • Comparing a given POS's n_substituted count to its reference n_appeared count tells us if it's statistically different (< or >). We know this will be true individually for any POS that is out of its confidence region for the global goodness-of-fit test, since it's a weaker hypothesis (so the null rejection region will be wider, and the POS we're looking at is already in the rejection region for the global test). We don't know if it'll be true or not for POSes that are in their confidence region for the global test.
  • Jointly comparing two POS's n_substituted counts to their reference n_appeared counts tells us if there is bias for one w.r.t. the other. This is also true for all pairs of POSes that are on alternate sides of their confidence region in the global test (for the same reasons as in the previous point). We don't know if it's true for the other POSes though.

In [9]:
# Test the n_substituted proportions are different from
# the n_appeared proportions
total_appeared = susties_pos.n_appeared.sum()
appeared_cis = multinomial_proportions_confint(
    susties_pos.n_appeared.round(), method='goodman')
differences = [(s < ci[0] * total_appeared) or (s > ci[1] * total_appeared)
               for s, ci in zip(susties_pos.n_substituted, appeared_cis)]
are_different = np.any(differences)
if are_different:
    print("Appeared and substituted proportions are different with p < .05")
    print("The following POS tags are out of their confidence region:",
          list(susties_pos.index[np.where(differences)[0]]))
else:
    print("Appeared and substituted proportions cannot be "
          "said different with p value better than .05")


Appeared and substituted proportions are different with p < .05
The following POS tags are out of their confidence region: ['R', 'Stopword-like']

3 On global feature values

Prepare plotting functions, for bin and quartile susceptibilities for each feature.


In [10]:
def print_significance(feature, h0s, heights):
    h0_total = h0s.sum()
    bin_count = len(h0s)
    print()
    print('-' * len(feature))
    print(feature)
    print('-' * len(feature))
    for n_stars, alpha in enumerate([.05, .01, .001]):
        h0_cis = multinomial_proportions_confint(h0s.round(),
                                                 method='goodman',
                                                 alpha=alpha)
        differences = ((heights < h0_cis[:, 0] * h0_total)
                       | (heights > h0_cis[:, 1] * h0_total))
        are_different = np.any(differences)
        stars = ' ' * (3 - n_stars) + '*' * (1 + n_stars)
        if are_different:
            bins_different = np.where(differences)[0]
            bins_different += np.ones_like(bins_different)
            print(stars + ' Target different H_0 with p < {}.'
                  ' Bins [1; {}] out of region: {}'
                  .format(alpha, bin_count, bins_different.tolist()))
        else:
            print('     Target NOT different from H_0 (p > {})'
                  .format(alpha))
            break

In [11]:
def plot_bin_susties(**kwargs):
    data = kwargs['data']
    feature = data.iloc[0].feature
    color = kwargs.get('color', 'blue')
    relative = kwargs.get('relative', False)
    quantiles = kwargs.get('quantiles', False)
    value = data.value_rel if relative else data.value
    
    # Compute binning.
    cut, cut_kws = ((pd.qcut, {}) if quantiles
                    else (pd.cut, {'right': False}))
    for bin_count in range(BIN_COUNT, 0, -1):
        try:
            value_bins, bins = cut(value, bin_count, labels=False,
                                   retbins=True, **cut_kws)
            break
        except ValueError:
            pass
    middles = (bins[:-1] + bins[1:]) / 2

    # Compute bin counts. Note here the bins are computed on the
    # distribution of observed substitutions, not the simulated aggregated
    # distributions of cluster-unit substitutions. But since it's mostly
    # deduplication that the aggregation process addresses, the bins
    # should be mostly the same. This could be corrected by computing
    # bins on the aggregate distribution (not hard), but it's really
    # not important now.
    heights = np.zeros(bin_count)
    h0s = np.zeros(bin_count)
    for i in range(bin_count):
        heights[i] = (data[data.target & (value_bins == i)]
                      .weight_feature.sum())
        h0s[i] = data[value_bins == i].weight_feature_appeared.sum()
    total = sum(heights)
    cis = (multinomial_proportions_confint(heights.round(),
                                           method='goodman')
           * total / h0s[:, np.newaxis])
    
    # Plot them.
    sigmaphi = (r'\sigma_{\phi'
                + ('_r' if relative else '')
                + '}')
    plt.plot(middles, heights / h0s, 
             color=color, label='${}$'.format(sigmaphi))
    plt.fill_between(middles, cis[:, 0], cis[:, 1],
                     color=sb.desaturate(color, 0.2), alpha=0.2)
    plt.plot(middles, np.ones_like(middles), '--',
             color=sb.desaturate(color, 0.2),
             label='${}^0$'.format(sigmaphi))
    plt.xlim(middles[0], middles[-1])
    plt.ylim(0, 2)
    
    # Test for statistical significance
    print_significance(feature, h0s, heights)

In [12]:
def plot_grid(data, features, filename,
              plot_function, xlabel, ylabel, plot_kws={}):
    g = sb.FacetGrid(data=data[data['feature']
                               .map(lambda f: f in features)],
                     sharex=False, sharey=True,
                     col='feature', hue='feature',
                     col_order=features, hue_order=features,
                     col_wrap=3, aspect=1.5, size=3)
    g.map_dataframe(plot_function, **plot_kws)
    g.set_titles('{col_name}')
    g.set_xlabels(xlabel)
    g.set_ylabels(ylabel)
    for ax in g.axes.ravel():
        legend = ax.legend(frameon=True, loc='best')
        if not legend:
            # Skip if nothing was plotted on these axes.
            continue
        frame = legend.get_frame()
        frame.set_facecolor('#f2f2f2')
        frame.set_edgecolor('#000000')
        ax.set_title(Substitution._transformed_feature(ax.get_title())
                     .__doc__)
    if SAVE_FIGURES:
        g.fig.savefig(settings.FIGURE.format(filename),
                      bbox_inches='tight', dpi=300)

3.1 Bins of distribution of appeared global feature values


In [13]:
plot_grid(words, ordered_features,
          'all-susceptibilities-fixedbins_global',
          plot_bin_susties, r'$\phi$', 'Susceptibility')


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
     Target NOT different from H_0 (p > 0.05)

----------
clustering
----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [2]
     Target NOT different from H_0 (p > 0.001)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [2, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [3]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

Note on how graphs and their confidence intervals are computed here

There are three ways I can do a computation like above:

(1) For each word, we look at how many times it is substituted versus how many times it appears in a position where it could have been substituted. This is the word's susceptibility, $\sigma(w)$. Then for each feature bin $b_i$ we take all the words such that $\phi(w) \in b_i$, average, and compute an asymptotic confidence interval based on how many words are in the bin. This fails for sentence-relative features, because a given word has different feature values depending on the sentence it appears in. So we discard this.

(2) Do the same but at the feature value level. So we define a feature value susceptibility, $\sigma_{\phi}(f)$, and compute a confidence interval based on how many different feature values we have in the bin. The idea behind (1) and (2) is to look at the bin middle-value like the relevant object we're measuring, and we have several measures for each bin middle-value, hence the confidence interval. In each bin $b_i$ we have:

$$\left< \sigma_{\phi}(f) \right>_{f \in b_i}$$

The problem with both (1) and (2) is that there's no proper $\mathcal{H}_0$ value, because the averages in the bins don't necessarily equal 1 under $\mathcal{H}_0$. Also, we can't check that there is consistency, showing that the sum of susceptibility values of the bins is 1. Hence case 3:

(3) Consider that we sample a multinomial process: each substitution is in fact the sampling of a feature value from one of the four bins. In that case, we can compute multinomial proportion CIs. This is also not completely satisfactory since in most cases not all feature values are available at the time of sampling, since most sentences don't range over all the feature's values, but it's what lets us compute proper null hypotheses: in each bin $b_i$ we have a value of $\sigma_{\phi}(b_i)$, and the sum of those should be the same under $\mathcal{H}_0$ as in the experiment (in practice in the graphs, we divide by the values under $\mathcal{H}_0$, and the reference is $\sigma_{\phi}^0(b_i) = 1$).

Here and below, we're always in case (3).


In [14]:
plot_grid(words[~(((words.feature == 'letters_count') 
                   & (words.value > 15))
                  | ((words.feature == 'aoa') 
                     & (words.value > 15))
                  | ((words.feature == 'clustering') 
                     & (words.value > -3)))],
          PAPER_FEATURES,
          'paper-susceptibilities-fixedbins_global',
          plot_bin_susties, r'$\phi$', 'Susceptibility')


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

----------
clustering
----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [3, 4]

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

3.2 Quantiles of distribution of appeared global feature values


In [15]:
plot_grid(words, ordered_features,
          'all-susceptibilities-quantilebins_global', plot_bin_susties,
          r'$\phi$', 'Susceptibility',
          plot_kws={'quantiles': True})


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 2] out of region: [1, 2]
  ** Target different H_0 with p < 0.01. Bins [1; 2] out of region: [1, 2]
 *** Target different H_0 with p < 0.001. Bins [1; 2] out of region: [1, 2]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [3]
     Target NOT different from H_0 (p > 0.01)

-----------
betweenness
-----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [4]
     Target NOT different from H_0 (p > 0.01)

----------
clustering
----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [3]
     Target NOT different from H_0 (p > 0.01)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 3, 4]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

Note on confidence intervals

Here we're again in case (2) of the above explanation on confidence intervals (in section 3.1), since we're just binning by quantiles instead of fixed-width bins.


In [16]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-quantilebins_global', plot_bin_susties,
          r'$\phi$', 'Susceptibility',
          plot_kws={'quantiles': True})


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

----------
clustering
----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [3]
     Target NOT different from H_0 (p > 0.01)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

--------------
synonyms_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [3]
     Target NOT different from H_0 (p > 0.01)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

4 On sentence-relative feature values

4.1 Bins of distribution of appeared sentence-relative values


In [17]:
plot_grid(words, ordered_features,
          'all-susceptibilities-fixedbins_sentencerel',
          plot_bin_susties, r'$\phi_r$', 'Susceptibility',
          plot_kws={'relative': True})


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [2, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [2, 3]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [2, 3, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
     Target NOT different from H_0 (p > 0.05)

----------
clustering
----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 3, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

In [18]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-fixedbins_sentencerel',
          plot_bin_susties, r'$\phi_r$', 'Susceptibility',
          plot_kws={'relative': True})


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 3, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [2, 3, 4]

----------
clustering
----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

4.2 Quantiles of distribution of appeared sentence-relative values


In [19]:
plot_grid(words, ordered_features,
          'all-susceptibilities-quantilebins_sentencerel',
          plot_bin_susties, r'$\phi_r$', 'Susceptibility',
          plot_kws={'quantiles': True, 'relative': True})


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
     Target NOT different from H_0 (p > 0.05)

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

In [20]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-quantilebins_sentencerel',
          plot_bin_susties, r'$\phi_r$', 'Susceptibility',
          plot_kws={'quantiles': True, 'relative': True})


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

5 On quantiles and bins of the in-sentence distributions

5.1 In-sentence bins (of distribution of values in each sentence)


In [21]:
def plot_sentencebin_susties(**kwargs):
    data = kwargs['data']
    color = kwargs.get('color', 'blue')
    feature = data.iloc[0].feature
    
    # Compute bin counts
    heights = np.zeros(BIN_COUNT)
    h0s = np.zeros(BIN_COUNT)
    for i in range(BIN_COUNT):
        heights[i] = (data[data.target & (data.bin == i)]
                      .weight_feature.sum())
        h0s[i] = data[data.bin == i].weight_feature_appeared.sum()
    total = sum(heights)
    cis = (multinomial_proportions_confint(heights.round(),
                                           method='goodman')
           * total / h0s[:, np.newaxis])
    
    # Plot them.
    sigmaphi = r'\sigma_{bin_{\phi}}'
    x = range(1, BIN_COUNT + 1)
    plt.plot(x, heights / h0s, color=color, label='${}$'.format(sigmaphi))
    plt.fill_between(x, cis[:, 0], cis[:, 1],
                     color=sb.desaturate(color, 0.2), alpha=0.2)
    plt.plot(x, np.ones_like(x), '--',
             color=sb.desaturate(color, 0.2),
             label='${}^0$'.format(sigmaphi))
    plt.xticks(x)
    plt.ylim(0, None)
    
    # Test for significance.
    print_significance(feature, h0s, heights)

In [22]:
plot_grid(words, ordered_features,
          'all-susceptibilities-sentencebins',
          plot_sentencebin_susties, r'$bin_{\phi}$ in sentence',
          'Susceptibility')


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
     Target NOT different from H_0 (p > 0.01)

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

In [23]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-sentencebins',
          plot_sentencebin_susties, r'$bin_{\phi}$ in sentence',
          'Susceptibility')


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

5.2 In-sentence quantiles (of distribution of values in each sentence)

For each feature, count the sum of weights in each bin and plot that.


In [24]:
def bound(limits, values):
    left, right = limits
    assert left < right
    return np.maximum(left, np.minimum(right, values))

In [25]:
def plot_sentencequantile_susties(**kwargs):
    data = kwargs['data']
    color = kwargs.get('color', 'blue')
    feature = data.iloc[0].feature
    
    # Compute bin counts
    heights = np.zeros(BIN_COUNT)
    h0s = np.zeros(BIN_COUNT)
    step = 1 / BIN_COUNT
    for i in range(BIN_COUNT):
        limits = [i * step, (i + 1) * step]
        contributions = ((bound(limits, data.stop_quantile)
                          - bound(limits, data.start_quantile))
                         / (data.stop_quantile - data.start_quantile))
        heights[i] = \
            (contributions * data.weight_feature)[data.target].sum()
        h0s[i] = (contributions * data.weight_feature_appeared).sum()
    total = sum(heights)
    cis = (multinomial_proportions_confint(heights.round(),
                                           method='goodman')
           * total)# / h0s[:, np.newaxis])
    
    # Plot them.
    sigmaphi = r'\sigma_{q_{\phi}}'
    x = range(1, BIN_COUNT + 1)
    plt.plot(x, heights,# / h0s,
             color=color, label='${}$'.format(sigmaphi))
    plt.fill_between(x, cis[:, 0], cis[:, 1],
                     color=sb.desaturate(color, 0.2), alpha=0.2)
    plt.plot(x, h0s, '--',
             color=sb.desaturate(color, 0.2),
             label='${}^0$'.format(sigmaphi))
    plt.xticks(x)
    plt.ylim(0, None)
    
    # Test for significance.
    print_significance(feature, h0s, heights)

In [26]:
plot_grid(words, ordered_features,
          'all-susceptibilities-sentencequantiles',
          plot_sentencequantile_susties, r'$q_{\phi}$ in sentence',
          'Number of substitutions\n(weighted to cluster unit)')


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1]
     Target NOT different from H_0 (p > 0.01)

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

In [27]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-sentencequantiles',
          plot_sentencequantile_susties, r'$q_{\phi}$ in sentence',
          'Number of substitutions\n(weighted to cluster unit)')


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

6 Regression on significant features

6.1 Multinomial logistic regression

We try to predict which words are substituted, based on their global values, sentence-relative values, bins and quantiles of those, or in-sentence bin values.

Prediction is not good, mainly because the constraint of one-substitution-per-sentence can't be factored in the model simply. So precision is generally very low, around .20-.25, and when accuracy goes up recall plummets.

So it might show some interaction effects, but given that the fit is very bad I wouldn't trust it.

In-sentence quantiles (from section 5.2) were not done, as they're impossible to reduce to one value (our measure of those quantiles is in fact a subrange of [0, 1] for each word, corresponding to the subrange of the sentence distribution that that word's feature value represented).


In [28]:
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from scipy.stats import binom_test

In [29]:
def regress_binning(data, features, value_funcs):
    # Compute bins
    data = data.copy()
    regress_features = [('{}'.format(value_name), feature)
                        for value_name in value_funcs.keys()
                        for feature in features]
    for i, (value_name, value_func) in enumerate(value_funcs.items()):
        data[value_name] = value_func(data)
    
    # Massage the dataframe to have feature bin as columns.
    data_wide = pd.pivot_table(
        data,
        values=list(value_funcs.keys()),
        index=['destination_id', 'occurrence', 'source_id', 'position',
               'word_position'],
        columns=['feature']
    )[regress_features]

    # Add the target value.
    # Question/FIXME: should we use weight_appeared for regression?
    data_wide['target'] = pd.pivot_table(
        data,
        values=['target'],
        index=['destination_id', 'occurrence', 'source_id', 'position',
               'word_position'],
        columns=['feature']
    )[('target', 'aoa')]
    data_wide = data_wide.dropna()

    # Compute polynomial features.
    poly = PolynomialFeatures(degree=2, interaction_only=True)
    pdata = poly.fit_transform(data_wide[regress_features])
    pregress_features = [' * '.join(['_'.join(regress_features[j])
                                   for j, p in enumerate(powers)
                                   if p > 0]) or 'intercept'
                         for powers in poly.powers_]

    # Divide into two sets.
    print('Regressing with {} word measures (divided into'
          ' training and prediction sets)'
          .format(len(data_wide)))
    pdata_train = pdata[:len(data_wide) // 2]
    target_train = data_wide.iloc[:len(data_wide) // 2].target
    pdata_predict = pdata[len(data_wide) // 2:]
    target_predict = data_wide.iloc[len(data_wide) // 2:].target
    assert len(pdata_train) + len(pdata_predict) == len(data_wide)
    assert len(target_train) + len(target_predict) == len(data_wide)
    
    # Regress
    regressor = LogisticRegression(penalty='l2', class_weight='balanced',
                                   fit_intercept=False)
    regressor.fit(pdata_train, target_train)
    
    # And predict
    prediction = regressor.predict(pdata_predict)
    standard = target_predict.values
    success = prediction == standard
    
    tp = prediction & standard
    tn = (~prediction) & (~standard)
    fp = prediction & (~standard)
    fn = (~prediction) & standard
    
    print()
    print('{:.2f}% of words well predicted (non-random at p = {:.1})'
          .format(100 * success.mean(),
                  binom_test(success.sum(), len(success))))
    print('Precision = {:.2f}'.format(standard[prediction].mean()))
    print('Recall = {:.2f}'.format(prediction[standard].mean()))
    print()
    print('Coefficients:')
    print(pd.Series(index=pregress_features, data=regressor.coef_[0]))

Global feature value


In [30]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'global': lambda d: d.value})


Regressing with 164217 word measures (divided into training and prediction sets)

57.26% of words well predicted (non-random at p = 1e-323)
Precision = 0.32
Recall = 0.58

Coefficients:
intercept                                             3.343443
global_frequency                                     -0.362514
global_aoa                                           -0.547383
global_letters_count                                  0.207862
global_orthographic_density                           0.144328
global_frequency * global_aoa                         0.060200
global_frequency * global_letters_count              -0.040318
global_frequency * global_orthographic_density        0.003758
global_aoa * global_letters_count                     0.017620
global_aoa * global_orthographic_density             -0.051941
global_letters_count * global_orthographic_density    0.062052
dtype: float64

Sentence-relative feature value


In [31]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'sentence-rel': lambda d: d.value_rel})


Regressing with 164217 word measures (divided into training and prediction sets)

60.79% of words well predicted (non-random at p = 1e-323)
Precision = 0.32
Recall = 0.50

Coefficients:
intercept                                                        -0.318631
sentence-rel_frequency                                           -0.148903
sentence-rel_aoa                                                  0.015283
sentence-rel_letters_count                                       -0.039957
sentence-rel_orthographic_density                                -0.029326
sentence-rel_frequency * sentence-rel_aoa                         0.023598
sentence-rel_frequency * sentence-rel_letters_count              -0.034346
sentence-rel_frequency * sentence-rel_orthographic_density       -0.002080
sentence-rel_aoa * sentence-rel_letters_count                     0.038838
sentence-rel_aoa * sentence-rel_orthographic_density              0.020525
sentence-rel_letters_count * sentence-rel_orthographic_density    0.053394
dtype: float64

Global + sentence-relative feature values


In [32]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'global': lambda d: d.value,
                 'sentence-rel': lambda d: d.value_rel})


Regressing with 164217 word measures (divided into training and prediction sets)

62.52% of words well predicted (non-random at p = 1e-323)
Precision = 0.35
Recall = 0.56

Coefficients:
intercept                                                         -0.481700
sentence-rel_frequency                                            -0.721328
sentence-rel_aoa                                                   0.138638
sentence-rel_letters_count                                        -0.034946
sentence-rel_orthographic_density                                  0.536210
global_frequency                                                   0.168103
global_aoa                                                        -0.901720
global_letters_count                                               0.489134
global_orthographic_density                                        0.826901
sentence-rel_frequency * sentence-rel_aoa                         -0.077099
sentence-rel_frequency * sentence-rel_letters_count               -0.042081
sentence-rel_frequency * sentence-rel_orthographic_density        -0.038071
sentence-rel_frequency * global_frequency                          0.020250
sentence-rel_frequency * global_aoa                                0.031195
sentence-rel_frequency * global_letters_count                      0.020721
sentence-rel_frequency * global_orthographic_density               0.089706
sentence-rel_aoa * sentence-rel_letters_count                      0.090364
sentence-rel_aoa * sentence-rel_orthographic_density               0.459521
sentence-rel_aoa * global_frequency                                0.095076
sentence-rel_aoa * global_aoa                                      0.014858
sentence-rel_aoa * global_letters_count                           -0.094186
sentence-rel_aoa * global_orthographic_density                    -0.340850
sentence-rel_letters_count * sentence-rel_orthographic_density    -0.216403
sentence-rel_letters_count * global_frequency                      0.028842
sentence-rel_letters_count * global_aoa                           -0.073539
sentence-rel_letters_count * global_letters_count                 -0.025572
sentence-rel_letters_count * global_orthographic_density           0.124320
sentence-rel_orthographic_density * global_frequency               0.023450
sentence-rel_orthographic_density * global_aoa                    -0.231960
sentence-rel_orthographic_density * global_letters_count           0.207078
sentence-rel_orthographic_density * global_orthographic_density   -0.189852
global_frequency * global_aoa                                      0.027039
global_frequency * global_letters_count                           -0.056220
global_frequency * global_orthographic_density                    -0.049702
global_aoa * global_letters_count                                  0.083738
global_aoa * global_orthographic_density                           0.130443
global_letters_count * global_orthographic_density                -0.204008
dtype: float64

(3.1) Bins of distribution of appeared global feature values


In [33]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'bins-global':
                     lambda d: pd.cut(d.value, BIN_COUNT,
                                      labels=False, right=False)})


Regressing with 164217 word measures (divided into training and prediction sets)

64.84% of words well predicted (non-random at p = 1e-323)
Precision = 0.38
Recall = 0.63

Coefficients:
intercept                                                       0.251881
bins-global_frequency                                           0.097624
bins-global_aoa                                                -1.266303
bins-global_letters_count                                       0.022710
bins-global_orthographic_density                                0.474632
bins-global_frequency * bins-global_aoa                         0.973378
bins-global_frequency * bins-global_letters_count              -0.766857
bins-global_frequency * bins-global_orthographic_density       -0.618048
bins-global_aoa * bins-global_letters_count                     0.244898
bins-global_aoa * bins-global_orthographic_density             -0.682130
bins-global_letters_count * bins-global_orthographic_density    1.170140
dtype: float64

(3.2) Quantiles of distribution of appeared global feature values


In [34]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'quantiles-global':
                     lambda d: pd.qcut(d.value, BIN_COUNT, labels=False)})


Regressing with 164217 word measures (divided into training and prediction sets)

55.47% of words well predicted (non-random at p = 3e-216)
Precision = 0.32
Recall = 0.66

Coefficients:
intercept                                                                 2.742018
quantiles-global_frequency                                               -2.628936
quantiles-global_aoa                                                     -1.289167
quantiles-global_letters_count                                            4.317996
quantiles-global_orthographic_density                                    -2.267747
quantiles-global_frequency * quantiles-global_aoa                         0.874983
quantiles-global_frequency * quantiles-global_letters_count              -0.789338
quantiles-global_frequency * quantiles-global_orthographic_density        1.412927
quantiles-global_aoa * quantiles-global_letters_count                    -0.425390
quantiles-global_aoa * quantiles-global_orthographic_density             -0.223808
quantiles-global_letters_count * quantiles-global_orthographic_density   -0.712372
dtype: float64

(4.1) Bins of distribution of appeared sentence-relative values


In [35]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'bins-sentence-rel':
                     lambda d: pd.cut(d.value_rel, BIN_COUNT,
                                      labels=False, right=False)})


Regressing with 164217 word measures (divided into training and prediction sets)

71.50% of words well predicted (non-random at p = 1e-323)
Precision = 0.41
Recall = 0.28

Coefficients:
intercept                                                                   0.902856
bins-sentence-rel_frequency                                                -0.678447
bins-sentence-rel_aoa                                                      -0.430208
bins-sentence-rel_letters_count                                            -0.425241
bins-sentence-rel_orthographic_density                                      0.902856
bins-sentence-rel_frequency * bins-sentence-rel_aoa                         0.100913
bins-sentence-rel_frequency * bins-sentence-rel_letters_count               0.349970
bins-sentence-rel_frequency * bins-sentence-rel_orthographic_density       -0.678447
bins-sentence-rel_aoa * bins-sentence-rel_letters_count                     0.630329
bins-sentence-rel_aoa * bins-sentence-rel_orthographic_density             -0.430208
bins-sentence-rel_letters_count * bins-sentence-rel_orthographic_density   -0.425241
dtype: float64

(4.2) Quantiles of distribution of appeared sentence-relative values


In [36]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'quantiles-sentence-rel':
                     lambda d: pd.qcut(d.value_rel, BIN_COUNT,
                                       labels=False)})


Regressing with 164217 word measures (divided into training and prediction sets)

48.52% of words well predicted (non-random at p = 3e-17)
Precision = 0.28
Recall = 0.65

Coefficients:
intercept                                                                             0.080587
quantiles-sentence-rel_frequency                                                     -0.052984
quantiles-sentence-rel_aoa                                                           -0.278743
quantiles-sentence-rel_letters_count                                                  0.000389
quantiles-sentence-rel_orthographic_density                                           0.018122
quantiles-sentence-rel_frequency * quantiles-sentence-rel_aoa                         0.186382
quantiles-sentence-rel_frequency * quantiles-sentence-rel_letters_count              -0.247670
quantiles-sentence-rel_frequency * quantiles-sentence-rel_orthographic_density        0.020872
quantiles-sentence-rel_aoa * quantiles-sentence-rel_letters_count                     0.119942
quantiles-sentence-rel_aoa * quantiles-sentence-rel_orthographic_density              0.062543
quantiles-sentence-rel_letters_count * quantiles-sentence-rel_orthographic_density   -0.078294
dtype: float64

(5.1) In-sentence bins (of distribution of values in each sentence)


In [37]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'in-sentence-bins': lambda d: d.bin})


Regressing with 164217 word measures (divided into training and prediction sets)

66.90% of words well predicted (non-random at p = 1e-323)
Precision = 0.40
Recall = 0.61

Coefficients:
intercept                                                                -0.496654
in-sentence-bins_frequency                                               -0.178936
in-sentence-bins_aoa                                                      0.172653
in-sentence-bins_letters_count                                            0.316749
in-sentence-bins_orthographic_density                                     0.314365
in-sentence-bins_frequency * in-sentence-bins_aoa                        -0.002662
in-sentence-bins_frequency * in-sentence-bins_letters_count              -0.104625
in-sentence-bins_frequency * in-sentence-bins_orthographic_density       -0.016064
in-sentence-bins_aoa * in-sentence-bins_letters_count                     0.005941
in-sentence-bins_aoa * in-sentence-bins_orthographic_density             -0.017442
in-sentence-bins_letters_count * in-sentence-bins_orthographic_density   -0.157602
dtype: float64

6.2 PCA

We get coefficient values out of the PCA, but I can't figure what to make of them... They reflect the correlations of the features, alright, but beyond that? Some interactions, but there's no clear interpretation of the coefficients and variances explained into interaction strengths.


In [38]:
from sklearn.decomposition import PCA

In [39]:
def pca_values(data, features, value_func):
    data = data.copy()
    data['pca_value'] = value_func(data)
    
    # Prepare dataframe, averaging over shared durl.
    data_wide = pd.pivot_table(
        data[data.target],
        values='pca_value',
        index=['cluster_id', 'destination_id', 'occurrence',
               'position'],
        columns=['feature']
    )[features]
    # ... then over shared clusters, and dropping NaNs.
    data_wide = data_wide\
        .groupby(level='cluster_id')\
        .agg(np.mean)\
        .dropna(how='any')
    print('Computing PCA on {} aggregated word measures'
          .format(len(data_wide)))
    print()
    
    # Compute PCA.
    pca = PCA(n_components='mle')
    pca.fit(data_wide)
    print('Variance explained by first {} components (mle-estimated): {}'
          .format(pca.n_components_, pca.explained_variance_ratio_))
    print()
    print('Components:')
    print(pd.DataFrame(index=data_wide.columns,
                       data=pca.components_.T,
                       columns=['Comp. {}'.format(i)
                                for i in range(pca.n_components_)]))

PCA of feature value of substituted words


In [40]:
pca_values(words, ['frequency', 'aoa', 'letters_count'],
           lambda d: d.value)


Computing PCA on 1506 aggregated word measures

Variance explained by first 2 components (mle-estimated): [ 0.68493472  0.18098882]

Components:
                Comp. 0   Comp. 1
feature                          
frequency     -0.380000  0.576279
aoa            0.741482 -0.277860
letters_count  0.552995  0.768568

PCA of sentence-relative value of substituted words


In [41]:
pca_values(words, ['frequency', 'aoa', 'letters_count'],
           lambda d: d.value_rel)


Computing PCA on 1506 aggregated word measures

Variance explained by first 1 components (mle-estimated): [ 0.63041865]

Components:
                Comp. 0
feature                
frequency     -0.499677
aoa            0.661912
letters_count  0.558745